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Elementary calculations indicate that the effect of the Earth’s rotation is likely to 
be important in the dynamics of most internal waves in oceans, lakes and the 
atmosphere. Here we present measurements of the structure and properties of one 
class of such waves, namely solitary internal Kelvin waves, in which the Coriolis force 
generated by wave motion in a stratified fluid is opposed by a pressure gradient and 
hence change in wave amplitude along its crest. We confirm that the wave speed is 
independent of the rate a t  which the system rotates and depends only on the 
stratification and maximum wave amplitude. However, rotation is shown to have a 
large effect on both the rate a t  which the amplitude varies with time and the 
‘ cross-stream ’ structure of the wave. In  accordance with well-established theory, the 
amplitude transverse to the direction of propagation varies exponentially. This 
results in a decreasing wave speed with increasing distance from the wall, which in 
turn requires the wave front be curved backwards in order for the wave as a whole 
to propagate a t  a speed given by its maximum amplitude. Such a front curvature 
is not contained within the available theories. The rapid decay of wave amplitude 
is found to  be due to the generation of inertial waves in the homogeneous fluid above 
and below the internal wave, and a reasonably successful scaling of this effect has 
been found. We also discuss the adjustment of the waves to geostropic balance and 
comment on applications of our results to natural systems. 

1. Introduction 
Here we present a relatively straightforward extension of some recent work on the 

generation of internal solitary waves by the collapse of a mixed region into a stably 
stratified fluid (Maxworthy 1980, hereinafter referred to as M; Amen & Maxworthy 
1980). By placing a shortened version of the wave tank used in those studies onto 
a rotating table, we have studied the generation and unique properties of 
large-amplitude solitary internal Kelvin waves. To our knowledge such waves have 
not been studied quantitatively before in the laboratory, although Suberville (1974) 
has studied sloshing in a rotating, stratified tank and has produced a moving-picture 
film of solitary, Kelvin waves; while related work on gravity currents in a rotating 
tank has recently been reported (Stern, Whitehead & Hua 1982; R. W. Griffiths 
private communication). It is also clear that the results to be presented should have 
a considerable influence on our interpretation of a number of experiments in natural 
systems where the relevant parameters are within the range of our laboratory 
experiments. The most important of the latter is the internal Rossby radius of 
deformation ( L  = N d / f  as usually defined; where N is the intrinsic frequency 
[ - (g /p )  tlpplaz]+, d a depthscale, p the density, g the gravitational acceleration, z the 
vertical coordinate and f twice the local rotation rate ( Q l s ) ) .  In cases where N and/or 
d are rapidly changing functions of depth i t  is necessary to substitute L, = c / f ,  where 
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c is the wave speed of the appropriate internal wave mode, to retain the original 
physical concept of I,, which is to compare a typical long-wave speed to the rate of 
rotation of the system. We can therefore discuss waves in nature and waves in our 
laboratory tank by comparing this length to  an intrinsic length in the problem, e.g. 
the channel width W ,  in both the field and experiment. Several cases come to mind. 
In  the studies of Mortimer (1955), Thorpe (1971) and Thorpe, Hall & Crofts (1972) 
of large-amplitude waves and bores in Loch Ness (see Thorpe 1974) the measured 
wave speed was about 37 crn/s, resulting in a value of L, z 3.3 km, which we note is 
about twice the width of the Loch. I n  this case Mortimer (1955) suggested a sequence 
of isotherm shapes that qualitatively conformed to those one would expect of internal 
seiches modified by the effects of rotation. More recently Hamblin (1978) has 
calculated these effects in more detail for Kamloops Lake, and finds moderately good 
agreement with observations. In  the measurements of Smith & Farmer (1977) and 
Farmer & Smith (1980) on internal waves in Knight Inlet B.C. they found a wave 
speed of around 50 cm/s, corresponding to  a value of L, z 4.5 km, about one and a 
half times the width of the channel. Farmer (1978) suggested that serious considera- 
tion should be given to  rotational effects, since I,, (2-3 km) in his case was much 
smaller than the width (2-10 km) of Babine Lake in which he conducted his study. 
Hunkins & Fliegel (1978) measured wave speeds of 3 5 4 0  cm/s, corresponding to 
Lc = 3.fi-4.2 km in a lake of width of approximately 5 km. Finally, in atmospheric 
flows theories of both the Southerly Buster (Baines 1980; Gauntlett 1981) and the 
waves propagating around the tip of South Africa (Anh & Gill 1981 ; Bannon 1981), 
invoke internal Kelvin waves as a plausible explanation, and such waves appear to 
have much in common with those to  be described. 

The linear theory of internal Kelvin waves is well established (e.g. Pedlosky 1979), 
while the weakly nonlinear theory has recently been calculated by L. G. Redekopp 
(Private communication). For the moment we note that such waves have amplitudes 
which vary exponentially along the wave crest and have no transverse velocity. The 
pressure difference thus generated is supported by the wall along which the wave 
propagates. 

2. Apparatus 
A section of rectangular Plexiglas channel 360 cm long x 20 cm wide x 30 cm 

high was mounted on an existing rotating table (figure 1 ) .  Before rotation the lower 
15 rm was filled with a salt solution of known density (p, = 1.04 or 1.08 g/cm3). The 
table was then set into rotation a t  a known rate, and the tank was filled slowly, 
through a floating diffuser, with fresh water of density pz = 1 .00 g/cm3. The float and 
supply tube were then removed. Usually the interface produced between the two 
constant-density layers was too thin for our purposes, and a wire mesh had to be 
drawn through the interface several times in order to thicken it. After one hour, when 
diffusion had smoothed out all irregularities, two layers of dyed freon-kerosene 
droplets were introduced to settle a t  two known levels. The required drop densities 
were found by noting that the density profile was closely represented by 

p ( 7 )  = p [ 1 - w" tanh a71 

{see Benjamin 1967; Faust 1981 ; M),  where 7 is the height from the midplane of the 
interface, j i  is the mean density +(pl + p z ) ,  w" is a measure of the density difference and 
equals (pz -p, ) / (p2 + p l ) ,  and a is the inverse scale height of the density distribution. 
The drop densities were calculated so that they were in equilibrium a t  heights 1/a 
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FIGURE 1. Apparatus. We attempt to show all of the experimental apparatus and procedure on 
one drawing. The fill tube and float were removed before the experiment started. The barrier, shown 
in place here, was removed to create the initial internal gravity current, which is shown. 

from the midlevel (i.e. a t  levels a t  which ay = 1 and tanhay = 0.762). Thus the 
distance between the layers was equal to 2/a = ha, while the distortions of the layers, 
as the waves propagated, were a convenient and consistent measure of the wave 
amplitude, which could then be related to the theoretical developments of Benjamin 
(1967) and Joseph (1977), for example. 

The wave themselves were produced as in M by trapping fluid behind a barrier (see 
figure 1) and then mixing i t  up completely. Upon pulling out the barrier and coincident- 
ally starting a stopwatch in the field of view of a recording camera, the mixed fluid 
collapsed along the midplane of the interface generating a series of solitary Kelvin 
waves as it did so. 

Because of their three-dimensional structure, these waves had to be viewed from 
three mutually orthogonal directions. A motorized camera was mounted on a carriage 
above the tank, from which it could view the plan view of the wave and, reflected 
in a mirror, a side view. A second camera was mounted at the end of the tank so that 
we could photograph a front view of the wave as it approached the endwall of the 
tank. It was clearly difficult to take such front-view photographs at intermediate 
locations; however, this loss of information was not serious once the basic structure 
of the waves had been inferred from the information that was available. 

A large number of experiments were performed covering, in particular, a large range 
in SZ from 0.0164/s to  0.262/s with intermediate values of 0.0330/s, 0.0650/s and 
0.133/s. Two density differences p2-p1 were used: 0.04 g/cm3 and 0.08 g/cm3, 
although the majority of the experiments were performed with the former value. 
Three values of mixed-region width H were considered: 0.64,1.91 and 3.18 cm. Under 
less-precise control were the values of ha. We attempted to use two basic values, 1.5 
and 2.5 em, but the range finally stretched in irregular intervals from 1.3 to 2.5 em. 
Ultimately a total of 41 experiments were performed and analysed. 
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FIGURE 2 .  ( a )  Initial form taken by the internal gravity current shortly after barrier removal. Three 
views are shown to indicate the wedge-shaped three-dimensional nature of this feature. For large 
amplitudes, i.e. large H/h, ,  the front was turbulent with a Kelvin-Helmholtz (K-H) type of 
shear-flow instability very evident. ( b )  Evolved wave field. The state shown in ( a )  has evolved into 
a sequence of solitary waves, two of which are drawn here. The wave amplitude decreases away 
from the left-hand wall and 'closed streamlines' only existed part of the way across the tank. 

3. Results 
3.1. Preliminary, qualitative observations 

As a first step we believe i t  is useful to  consider a typical wave evolution so that the 
quantitative results can be presented in a logical way later. On the one hand, we 
know that the prior results of M must be approached as Q + O ,  although it  turns out 
that  even a very small rotation rate, for which L, % W ,  showed measurable 
deviations from the previous results. As a result i t  is helpful to consider initially the 
other limit for which L, 5 W and for which the effects of rotation are most dramatic. 
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Under such circumstances the removal of the barrier created an internal gravity 
current, which because of the clockwise rotation started to move along the left-hand 
wall of the tank (looking in the direction of motion). This mass of constant-density 
fluid distorted the isopycnal surfaces symmetrically about the midplane of the 
interface ; however, the thickness of the region of mixed fluid varied across the channel 
(figures 2a,  3a) .  Significantly the wave front when viewed from above was inclined 
backwards, while the side view was indistinguishable from the waveforms found in 
M. As the forward wave evolved further more waves began to emerge behind i t ,  
although the tank was too short to allow their full evolution, as in M. However, by 
the time the wave had almost reached the end of the tank i t  had the form shown 
in figures 2(b) and 3 ( a ) .  A compact blob of mixed fluid was being carried along by 
the wave. As in M, as the wave amplitude decreased, owing to internal dissipation, 
the mixed fluid slowly leaked from the rear of the wave until eventually no closed 
stream surfaces could exist and the wave left the mixed fluid behind completely. In  
figure 2 ( b )  we have also tried to indicate, by the chain-dotted lines, that  the lines of 
constant phase across the wave were curved backwards as indicated by the distortion 
of the sheet of marker drops. This curvature has no equivalent in the theory of linear 
Kelvin waves since i t  is a reflection of nonlinear effects - in particular, the dependence 
of wave speed upon wave amplitude. I n  the simplest case this can be expressed as 
C = C,(l+ ka) (see Benjamin 1967), where C, is the linear long-wave speed, a (see 
figure 2) the wave amplitude and K a calculable constant. I n  our case, since a 
decreased away from the wall the wave speed must also decrease and the wave front 
must be curved in order for the whole to propagate a t  its maximum velocity, that 
determined by the amplitude a t  the wall (see figure 4). 

I n  cases where L was larger than in the one described above, the region of closed 
streamlines could extend completely across the tank (figure 36) .  Even for the lowest 
rotation rate possible in the present equipment (for which L, x 210 cm, i.e. 10 times 
the tank width), the wave front was still noticeably curved (figure 3b)  owing to  the 
small change in wave speed across the wave and the cosinusoidal dependence on wave 
angle (figure 41, which is also weak as B+90°. It is also of interest that  no reflected 
waves were observed owing to  the interaction of the curved wave front with the 
sidewall of the channel. I n  all the experiments several distinct solitary waves were 
formed, typically 3 or 4; however, the tank was too short to allow the complete 
evolution of the full complement of waves, although we suspect that, as in M, more 
were formed when the volume of the mixed region was larger. 

The other interesting qualitative observation, which has not yet been fully 
explored, concerns the wave interaction with the endwall. Here, when L, was small, 
the compact blob travelling along the one wall turned the two corners a t  the end of 
the tank and proceeded along the opposite long wall, with, however, a much-diminished 
amplitude due to substantial turbulence generation a t  the sharp corners. When L, 
was large, the interaction still created a large variation in amplitude across the wave 
during the initial part of the interaction, even when it was barely apparent in the 
oncoming wave before interaction. We presume this was due t o  the relatively large 
wave curvature that existed, even in this case, so that the forward part of the wave 
interacted with the wall before the trailing part. This large disturbance then travelled 
across the endwall of the tank and then back along the other sidewall, creating a 
number of smaller waves as it did so. 
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( b )  

FIGURE 3. Sequence of photographs of the plan and side views of the waves for two extreme cases. 
(a )  A small value of L, = 9 cm showing the large wave-front curvature and the identity of the side 
view with tha t  found in M. ( b )  A large value of L, = 192 cm. Despite the fact that  L, is some ten 
times the channel width, wave-front curvature is still quite noticeable (cf. figure 10). 
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FIGURE 4. Curved shape of the constant-phase lines of a propagating solitary Kelvin wave. The 
whole wave moves at  a velocity G,  set by the maximum wave amplitude A ,  at the wall. Those 
parts of the wave further from the wall have smaller amplitudes A(y) and hence smaller velocity 
C(y). The wave makes a local angle O(y) to  the horizontal such tha t  cosO(y) = C(y)/C,. 

3.2. Quantitative observations 

The qualitative observations just presented can be expanded upon and quantitatively 
evaluated in several instances. We start by discussing the overall motion of the 
evolving first wave by measuring both its displacement x and the total wave height 
a, at the wall (see figure 2) as a function of time t .  A truly typical x versus t history 
is shown in figure 5 ( a )  for the conditions shown on that graph. By taking the local 
slope through four points at three different locations along this curve, local wave 
speeds C, were measured. Thedimensionless amplitudes A ,  = a,/h, - 1 corresponding 
to the locations a t  which C, was measured are also indicated on figure 5 ( a ) .  C, was 
then made dimensionless by dividing by [gh,(p, - p l ) / p ] 4 .  Approximately 100 points 
representing the dependence of dimensionless wave speed on dimensionless wave 
amplitude are shown in figure 5 ( b ) .  These points are well represented by the curve 

Cw - (0.33 f 0.02) { 1 + 0.51AW -0.024Ak}, 
(S’h,)? - 

which is to be compared with Benjamin’s (1967) expression for an internal wave in 
an infinitely deep fluid; in our notation 

cw - 0.35 { 1 + 0.3A,}, 
(S‘h,)+ - 

Curves representing both of these expressions are drawn on figure 5(b ) .  We note 
especially that no dependence on L, can be distinguished, even though i t  varied by 
a factor of 20 over the whole range of the experiments. This is exactly what one would 
expect from the theory of Kelvin waves, since in that case only the transverse wave 
structure is affected by the overall rotation of the wave guide. 

In  this figure we also show that for low amplitudes the difference between our 
results and those of Benjamin (1967) can be explained to  some extent by the finite 
depth D of our waveguide. Using Joseph (1977) we can correct Benjamin’s infinite- 
depth result and also show this on figure 5 ( b )  for a depth ratio D/h, of 15, typical 
of our experimental range. It is also possible that some of the small scatter of figure 



Solitary internal Kelvin waves 373 

5 ( b )  is due to  the different values of D/ho used, but no consistent trend with this 
parameter can be determined from the data. 

At large values of A ,  the width of the propagating mixed region of fluid and the 
distance between the two lines of particles were the same. One might anticipate that 
under these circumstances the motion would approximate that due to a gravity 
current, so that the effects of the distribution of stratification would be small. On 
figure 5(b )  we have drawn a line which represents the velocity of propagation of a 
gravity current with the same amplitude as the waves observed in the present case 
from the curve presented in Britter & Simpson (1978) for the case of a ‘slip ’ boundary 
condition. The basis for the calculation is as follows. The velocity of propagation of 
a gravity current is given by 

where Ap is the density difference between the current and its surroundings, h, is the 
height of the fluid layer behind the head of the current (see Britter & Simpson 1978) 
and f ( 4 )  represents a correction due to the finite depth of the tank in which it 
propagates, where 4 = h,/total depth. I n  our case Ap = (p , -p2 ) /p ,  h, = !p, and 
$ = a,/D. 

The equation for U can now be rewritten as 

The curve shown in figure 5 ( 6 )  is the above expression calculated for a representative 
value of h, = 1.6 cm. We see that our waves are approaching this gravity-current 
limit, although we have too few points to be sure of the precise asympt0te.t On this 
same figure we also show a few points from a recent study by Faust (1981) of 
large-amplitude non-rotating density fronts between two layers of constant density 
for which H was very large. Only in a few cases did identifiable waves appear, but 
his front velocity and our wave velocity appear to overlap consistently for parameter 
values which are comparable. Both this work and our own are clearly related to a 
more recent paper of Britter & Simpson (1981) in which they discuss the connections 
between gravity currents on interfaces, as studied here, and those with slip and no-slip 
boundary conditions a t  a solid surface. At the suggestion of a referee, on figure 5 ( b )  
we also plot results from this paper for values of A ,  2 4 from their figure 5 : our results 
and theirs are seen to  be in reasonable agreement in this limit. 

While analysing the measurements discussed above, it became clear that  the effect 
of tank rotation on the decay rate of wave amplitude was very strong. The data set 
was expanded to  include the measurement of wave amplitude from every photograph. 
With some exceptions, the amplitude varied as 

where t is the time and to the time for the first observation of amplitude A,(O). 

f In  our case the interface between the mixed fluid and the surroundings is thicker than that 
in the conventional gravity-current situation because of the presence of the initial density 
distribution. This in turn results in a more-stable interface, so that the height of the head (h,+h,, 
in the Britter-Simpson notation) is approximately equal to h,. It is likely that some of the 
differences between the present experiments at large values of A ,  and the gravity-current results 
of Britter t Simpson (1978) are due to the inaccuracy of this assumption. 
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FIGURE 5 (a ) .  For caption see facing page. 

Figure 6 shows two such curves for identical initial conditions, except that L, is 
137 cm in one case and 32 cm in the other. This demonstrates the dramatic effect that  
increasing the rotation rate has on increasing the internal wave dissipation. The 
reason for the majority of this increase is clear. The propagating internal wave 
appears as a moving topographical disturbance to  the homogeneous fluid above and 
below the wave guide. It can generate inertial waves in a manner entirely equivalent 
to that observed by Heikes & Maxworthy (1982) above a solid object being towed 
through a rotating, unstratified medium.? I n  figure 7 we show a computer simulation 
of these waves, using the method outlined in this reference, for a set of conditions 
typical of oceanic internal waves and essentially assuming that the disturbance due 
to the wave can be replaced by an equivalent solid body. Similar waves can be seen 
in the present experiments, but the photographs are not suitable for reproduction 
here. The effect of these inertial waves is to cause a wave drag upon the internal wave 
which then results in a loss of energy from the latter. Observations show that the 
wave speed does not change very much during this process (typically 20 yo) and so 
we can make the following estimate of the wave-amplitude change. The rate of change 
of wave energy must equal the wave drag times the wave speed. Wave energy and 

t I am especially grateful for discussions with Dr R. W. Griffiths and Prof. E. J. Hopfinger on 
their work on gravity currents in a rotating fluid which first brought the possibility of inertial wave 
drag to my attention. 
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L W  - (0.33 f 0.02) 11 + 0.51A-0.024A2} 

I 

6 I 1 -  
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Dimensionless wave amplitude u,/h,  -1 = A ,  

FIGURE 5. ( a )  Typical wave history, displacement z versus time t .  Local values of wave velocity 
C,, amplitude A, and Rossby radius L, are shown. ( b )  Non-dimensional local wave velocity 
C,/(g’h,)? versus non-dimensional wave amplitude A ,  = a,/&- 1 .  These results represent values 
taken over a 20-fold range of L; no dependence on this parameter can be distinguished. -6-, from 
Faust (1981). Gravity-current data from Britter & Simpson (1978, - - - - ;  1981,-.---);  Benjamin 
(1967), -. .-. C, = 0.35(1+0.38,); Joseph (1977), -. . C, = 0.35(1+0.3Aw (i+h,/D).  

wave drag are both proportional to the square of the wave amplitude (Mason & Sykes 
1983) so that we can write 

da2 LE2Wa2 2 W  
dt g’A L,g’Aa2 

where c is the average wave speed during the period of observation. Thus 
a - exp{F2Wt/Lcg’A} for a two-dimensional wave of wavelength A and width W. 
Unfortunately A is not a clear-cut quantity in the present case owing to the variations 
in wave shape encountered. We therefore attempted to reduce our raw data by 
rescaling cr with L,g‘/c3 W .  The results showed a continuing dependence on both L, 
and the initial wave amplitude A,. Presumably this was due to three effects. First, 
the wave is not equivalent to a two-dimensional obstacle of width W because of the 
large variations of wave amplitude and orientation across the tank. Secondly, the 
effects of variable wave shape means that the constant of proportionality in the 
wave-drag equation is not constant, while the ignored variation in A must, in some 
way, depend on the wave amplitude. Empirically, we attempted to reduce the 
variations in our scaled cr by multiplying by various combinations of L: and AF until 
a satisfactory result was obtained. This is shown in figure 8, where we plot a ~ ~ / L 0 , ~ g ‘ A , ,  

--- N- 
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FIGURE 6. Two typical wave-amplitude decay curves for identical initial conditions, except that 
L, is 137 cm for one case and 32 cm for the other. 

versus L,. The former is constant a t  a value of 25 f 20 yo over a 20-fold change in 
L,. Such an observation has interesting implications for waves in natural systems, 
where, as we have indicated, rotation can be expected to  have a substantial effect. 
This change in amplitude and corresponding small change in wave speed also resulted 
in a change in L, as the wave propagated and a corresponding change in the wave 
curvature mentioned in $3.1 and presented in more detail a t  the end of this section. 
The wave adjusted to its changing amplitude since this was taking place relatively 
slowly, as has also been found in other studies of solitary waves in dissipative systems 
(e.g. Weidman & Maxworthy 1978). 

By photographing the wave as i t  approached the endwall of the tank we have been 
able to determine the cross-stream exponentially varying structure of these waves 
to a relatively low accuracy. Figure 8 shows measurements of the Rossby radius LM 
determined from these photographs as the transverse distance from the wall a t  which 
the wave amplitude A(y) is l / e  of the wall value. Again the accuracy is not high, 
but shows quite clearly and unexpectedly that the measured value LM and the 
calculated value L, of the Rossby radius differ by a factor of a t  least two. The validity 
of this observation is reinforced in our final quantitative results in which we calculate 
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FIGURE 7 .  Computer simulation of the inertial wave field over a solid body with the shape of a 
solitary wave, calculated using the method of Heikes & Maxworthy (1982). The parameters used 
are typical of oceanic values, e.g. a Rossby number based on wave width of (a) unity, and ( b )  0.5, 
and a depth ratio, i.e. wave height to fluid depth, of 0.13. The inclined lines indicate the location 
of the maximum displacement of each streamline. Calculations are due to Dr K. Heikes. 

the shape of the wave front based on rather elementary, but nonetheless satisfying, 
considerations. 

In  figure 4 we have already explained the basis for this calculation. We assume 
that the velocity C, of the wave is determined by its amplitude A, a t  the wall. Owing 
to the decrease in wave speed with amplitude those portions of the wave farther from 
the wall have a lower wave speed. We make use of our experimentally determined 
values of both velocity (figure 5 b )  and Rossby radius (figure 9) to determine the local 
wave angle 0 as shown in figure 4. Here then 

1 + 0.51AW e-zYILc- 0.024Ak e-42/2/L8 
cosB(y )  = 

1 +0.51AW-0.024A& 7 

where we have used the observation that L,  z $Lc. Clearly, a t  y = 0 , 8  = Oo, and we 
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can use a trivial 'shooting' technique to obtain the wave shape, knowing the value 
of 0 a t  each point. The final comparison is then shown in figure 9, where the agreement 
between the observed and calculated fronts is seen to be quite satisfactory. 

4. Conclusions and discussion 
The results presented in $ 3  are self-explanatory to a large extent. The majority 

of these could have been anticipated from the prior theoretical work, namely the 
independence of wave speed on rotation rate, its sole dependence on stratification and 
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wave amplitude, and the exponential form of the cross-stream wave structure. 
However, these in combination have the effect of producing a wave front which is 
curved downstream. This effect is not contained in the available theories nor was 
it anticipated prior to the performance of the experiments. Also of interest was the 
large increase in wave-energy dissipation for small values of L, due to inertial wave 
generation, even in cases where the flow was not turbulent. 

In  § 1 we mentioned several field studies in which internal surges and finite-amplitude 
waves had been studied in long thin lakes or fjords. Only Mortimer (1955) and 
Hamblin (1978) mention any observed effects of rotation ; cross-channel variation 
in amplitude, in the former case, and agreement with wave shapes in the latter. Most 
authors mentioned, in passing, that  the Earth's rotation was probably important to 
their studies but was nonetheless being ignored. In  every case L, was of the order 
of the width of the natural wave tank, and thus the wave structure would likely have 
been greatly modified by rotation. Based on the results of the present work, the effects 
are possibly even more dramatic, for not only should the actual Rossby radius, i.e. 
L,, be half the value calculated on simple arguments, but also the wave curvature 
should be quite large. As an exercise, we have used the data of Hunkins & Fliegel 
(1973) to calculate the equilibrium effects to be expected. At their site 1 ,  in the middle 
of the channel where the width is about 3.5 km they measured isotherm displacements 
of about 12 m on a mixed-layer depth of 15 m or so. The total fluid depth was some 
165 m. Assuming a wave speed of 37 cm/s, i.e. in the middle of their reported range 
of values, we calculate C, to be 3.8 km or L,  = 1.9 km (assuming such waves behave 
as the waves in our tank). We can now estimate the maximum wave amplitude on 
the eastern shore of the lake to  be 30 m or a non-dimensional wave amplitude A ,  = 2. 
Clearly nonlinear effects are very important in this case. Using our equation for wave 
angle we can in fact compute the wave shape, but, since no measurements are available 
to  check it against, the exercise is best completed by only noting that the wave 
amplitude on the western shore would have been 4.7 m at site 1 and 2 m a t  site 2 
(where the width is 5 km). Under these circumstances the maximum wave angles 6 
would have been 45' a t  site 1 and 50' a t  site 2. Such calculations imply that the 
maximum of wave amplitude on the western side would trail that on the eastern side 
by a distance of the order of the channel width (see figure lo), an effect which would 
have been readily observed. These authors also noted that the solitary wavetrains 
only appeared to propagate from south to north. While a large amplitude decrease 
is to be expected, due to substantial dissipation both while the wave propa- 
gated and due to interaction with the northern end of the lake, we suspect that  a 
southward-travelling wave could still have been observed on the western side of 
the lake even if no disturbance was noted in the centre. Such a preference for 
south-north propagation has also been noted by Farmer (1978) in Babine Lake. I n  
his case, however, there was a clear preference for generation in the south due to 
geographical and climatic constraints. 

Of course a calculation such as that outlined above requires that the wave be in 
a state of geostrophic balance. The reported observations of Smith & Farmer (1977) 
suggest that  the adjustment to geostropic balance may be quite slow if the initial 
waves produced by whatever generation mechanism, are two-dimensional. The waves 
observed in their study of generation by tidal flow over bottom topography appear, 
from their photograph, to be still quite two-dimensional a substantial distance 
(approximately 5 km) from the generation. However, the viewing angle is not very 
favourable for such observations, and may result in a false impression of the wave 
shape, as suggested by study of the more recent photographs discussed below. Based 
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FIGURE 10. Calculated versus observed wave shape from plan view of the waves as in figures 2 and 
3. The basis for this calculation is shown in figure 4 and explained in the text. 

on potential-vorticity conservation within such large-amplitude waves, one can 
estimate a velocity in the direction of the wave crests as ZOAh, where h is the 
‘wavelength ’ of the solitary wave and A its dimensionless amplitude. The adjustment 
time can then be calculated as some fraction of the channel width divided by this 
velocity. For Knight Inlet, this turns out to be between 7 and 14 h, depending on 
the assumptions made, during which time the waves would have travelled between 
12 and 24 km, while the wave decay time calculated from the results presented on 
figure 8 is 6&70 h. Such values appear to be typical of many limnological studies 
and suggest that  indeed structures of the type observed in this study will be observed 
but only sufficiently far from the location of their generation if the latter is initially 
a two-dimensional process. 

Dr David Farmer has kindly sent me three unpublished photographs of internal 
waves propagating westward on 16 August 1977 about 5-7 km from the location of 
generation in Knight Inlet and taken with the camera looking almost vertically down- 
wards. The shape and location of the leading wave is reproduced in figure 11, and i t  has 
begun to show the curved shape that one might expect of a Kelvin wave. Any 
attempt to compare these shapes with those calculated using the method presented 
in $ 3  is frustrated by a lack of knowledge of the magnitude of the parameters, 
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FIGURE 11. Sketch of the shape of the first of a group of internal wave propagation westward in 
Knight Inlet, transferred from photographs supplied by Dr D. M. Farmer of the Institute of Ocean 
Sciences, Sidney, B.C. The photographs were taken on 16 August 1977 a t  16.1 1 h 30 s for (a), 16.27 h 
20 sfor (6) and 16.41 h35 sfor (c). In thelattercase we havealsodrawn thesecondwave, chain-dotted, 
since i t  appears to interact with the first wave to the west. The curved shape into which this wave 
evolves is clearly related to the curved shapes we have observed in our experiments, although exact 
correspondence is probably confused by changes in wave speed due to changes in fluid depth, 
shoreline curvature and mean flow variations. 

especially amplitudes, of these waves. Estimates based on other similar waves in 
Smith & Farmer (1977) suggest that  those shown in figure 1 1  either have not yet 
evolved fully or are influenced by other effects that  have not been considered up to 
now, e.g. the dependence of wave speed on fluid depth near shore, shoreline curvature 
(Clarke 1977) and shear in the mean flow, but the estimates are too crude to  place 
reliance on these remarks. 

I n  our present experimental arrangement, the initial generation mechanism is not 
two-dimensional, and it is in fact the adjustment of the initial collapse which controls 
the type of wave produced initially. This process is completed before the first wave 
is observed a t  the 80cm station and so has no effect on our results. I n  future 
experiments we plan to  study the adjustment process in detail and check the accuracy 
of the estimate made above. 

One further example is contained in Baines (1980), where he developed a theory 
of the ‘Southerly Buster’, a coastal low-pressure front which appears to be strongly 
influenced by the presence of the Great Dividing Range in southeastern Australia. 
As a result of the interaction of a cold front with this mountain barrier a 
large-amplitude disturbance propagates rapidly northwards with the barrier t o  its 
left. A satellite photograph of the low-level cloud associated with such a front is 
reproduced in figure 12. Note particularly the curved shape of the front, a phenomenon 
which was commented on by Baines and for which he anticipated the explanation 
given in $3  of this paper! 

Finally we note, in passing, a series of experiments by Suberville (1974), Chabert 
d’Hieres & Suberville (1976) and Kravtchenko & Suberville (1977) on forced internal 
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FIGURE 12. Satellite image of a Southerly Buster showing the backward 
curved shape as i t  propagates northwards (from Raines 1980). 

waves in a rotating, rectangular container, i.e. a rotating version of Thorpe’s (1974) 
experiment, in which many of the features of interface distortion described qualita- 
tively by Mortimer (1955) are reproduced. Suberville (G. Chabert d’Hieres, private 
communication) also photographed solitary internal Kelvin waves in the same 
apparatus for a demonstration film, but these were not analysed in any detail. 

The majority of the experiments reported here were performed by Frances Teng 
of the Polytechnic School, Pasadena. Thc quality of the results owe much to her care, 
thoughtfulness and ingenuity. The results were analysed and prepared for publication 
while on leave at the University of Karlsruhe as a U.S. Senior Scientist Awardee 
(1981-82) of the von Humboldt Foundation. I am deeply grateful to Professor Franz 
Durst for nominating me for this award and for placing the facilities of his group a t  
my disposal during my stay. I am most grateful to  Dr K.  Heikes for the development 
and programming that led to the numerical calculations of figure 7,  which were one 
of the keys to the understanding of the role played by inertial waves in the decay 
of the internal Kelvin waves. The apparatus was skilfully constructed by Casey 
DeVries, while Jacquette Givens patiently typed the many revisions that were 
required as new information became available. The work was supported by the Office 
of Naval Research through both the Fluid Dynamics and Oceanography Divisions 
under Contract no. N0001482K0084 to the University of Southern California. 
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